Glucose dynamics and mortality in RRT patients: an initial report

Matthew A Rutherford, Gregory C Jones, Alan G Jardine, Patrick B Mark, Peter C Thomson, Christopher AR Sainsbury

Queen Elizabeth University Hospital, Glasgow, UK
Background

• Hypoglycaemia has been associated with increased length of stay and mortality in non-RRT populations\(^1\)

• Increasing data suggesting glucose variability is important\(^2\)

• RRT populations: hypo/hyper literature conflicting\(^3\)

• Effect of variability in RRT populations on mortality unclear

1) Kerry C. Diabet Med 2013
2) Zinman B. Diabetologia 2017
Aim

To explore associations between measured inpatient CBG characteristics on mortality in renal replacement therapy patients
Methods

• Data for all incident and prevalent RRT patients from 2008 to 2016 extracted from e-record

• Incident patient data merged with hospital capillary blood glucose (CBG) dataset
 – Abbott Precision Web

• CBG time stamp technique used to identify admissions

• Glucose characteristics within the first admission calculated
 – Hypoglycaemia < 4 mmol/l
 – Variability: above or below median interquartile range

• Survival analysis
 – Cox proportional hazard model (time to death)
 – Age as covariable
 – R software
Results

• 3134 RRT patients: incident and prevalent
 – 2215 prevalent individuals

• 367 544 CBGs

• 31 340 ‘time stamp’ admissions from 1663 individuals
 – First admissions analysed

• CBGs < 4 mmol/l
 – Longer admission (3.6 vs 1.9 days, p<0.001)
 – Higher number CBGs recorded (13 vs 4, p<0.001)
Whole cohort: hypo vs no hypo

\[p = 5.41 \times 10^{-6} \mid HR = 1.52 \]
\[n = 1663 \]
RRT type: hypo vs no hypo

Transplant
- $p = 0.0502 \mid HR = 9.39$
- $n = 52$

HD
- $p = 0.003 \mid HR = 1.41$
- $n = 626$

PD
- $p = 0.135 \mid HR = 1.56$
- $n = 128$
Whole cohort: high vs low variability

$p = 0.0017$ | $HR = 1.25$

$n = 1663$
RRT type: high vs low variability

Transplant
p = 0.57 | HR = 1.04
n = 68

HD
p = 0.00088 | HR = 1.29
n = 1304

PD
p = 0.082 | HR = 1.42
n = 252
Hypo vs no hypo:

Diabetes

- $p = 0.011 \ | HR = 1.47$
- $n = 422$

No Diabetes

- $p = 0.0051 \ | HR = 1.52$
- $n = 405$
High vs Low variability:

Diabetes

- p = 0.304 | HR = 1.12
- n = 679

No Diabetes

- p = 0.0026 | HR = 1.33
- n = 984
Results - summary

Hypoglycaemia and high glucose variability are associated with increased mortality in RRT patients

Hypoglycaemia is associated with increased mortality in RRT patients with and without diabetes

High glucose variability is associated with increased mortality in RRT patients without diabetes but not those with diabetes
Discussion

• Diabetes likely a confounder with whole cohort group

• Hypoglycaemia associated with increased mortality in non-diabetic group
 – Mechanism – dialysis related?
 – Sepsis / alcohol / liver / adrenal

• Lack of effect on mortality of variability in diabetes surprising

• Further work planned
Tx hypo vs no hypo

\[p = 0.0502 \mid HR = 9.39 \]

n = 52

Time (years) vs Survival

No hypo

Hypo
HD hypo vs no hypo

\[p = 0.003 \mid HR = 1.41 \]
\[n = 626 \]
PD hypo vs no hypo

p = 0.135 | HR = 1.56
n = 128
Tx high vs low variability

\(p = 0.57 \mid \text{HR} = 1.04 \)

\(n = 68 \)
HD high vs low variability

\[p = 0.00088 \mid HR = 1.29 \]
\[n = 1304 \]
PD high vs low variability

\[p = 0.082 \mid \text{HR} = 1.42 \]
\[n = 252 \]

Below median IQR

Above median IQR

Time (years)
Diabetes (all RRT): hypo vs no hypo

\(p = 0.011 \mid HR = 1.47 \)

\(n = 422 \)
No diabetes (all RRT): hypo vs no hypo

$p = 0.0051 \mid HR = 1.52$

$n = 405$
Diabetes (all RRT): high vs low variability

$p = 0.304 \mid HR = 1.12$

$n = 679$
No diabetes (all RRT): high vs low variability

\[p = 0.0026 \mid HR = 1.33 \]
\[n = 984 \]